原标题:《Crypto x AI: 10 Categories We're Watching in 2025》

作者:Archetype

编译:深潮TechFlow

 

1.智能体间的交互 (Agent-to-Agent Interaction)

区块链因其天然的透明性和可组合性,成为实现智能体间无缝交互的理想平台。在这种交互中,由不同机构为不同目的开发的智能体可以协作完成任务。目前已有一些令人兴奋的尝试,例如智能体之间相互转账、一起发行代币等。我们期待智能体间的交互能够进一步扩展:一方面创造全新的应用场景,例如由智能体驱动的新型社交平台;另一方面优化现有的企业工作流程,例如平台认证、微支付、跨平台工作流集成等,从而简化如今复杂繁琐的操作流程。- Danny、Katie、Aadharsh、Dmitriy

aethernet 和 clanker 在 Warpcast 上共同发行 Token

2.去中心化智能体组织 (Decentralized Agentic Organizations)

大规模多智能体协作是另一个令人振奋的研究方向。多智能体系统如何协同完成任务、解决问题,甚至管理协议和系统?在 2024 年初的文章《加密 + AI 应用的承诺与挑战》中,Vitalik 提出了利用 AI 智能体进行预测市场和裁决的设想。他认为,在大规模应用中,多智能体系统在“真相”发现和自治治理方面有着巨大的潜力。我们期待看到这种多智能体系统的能力如何被进一步发掘,以及“群体智能”如何在实验中展现出更多可能性。

此外,智能体与人类的协作也是一个值得探索的方向。比如,社区如何围绕智能体展开互动,或者智能体如何组织人类完成集体行动。我们希望看到更多以大规模人类协作为目标的智能体实验。当然,这需要配备某种验证机制,特别是在任务由链下完成的情况下。但这种探索可能会带来一些意想不到的奇妙结果。- Katie、Dmitriy、Ash

3.智能体驱动的多媒体娱乐 (Agentic Multimedia Entertainment)

数字化虚拟人格的概念已经存在多年。例如,初音未来 (Hatsune Miku, 2007) 曾在 2 万座席的场馆举办售罄演唱会;Lil Miquela (2016) 在 Instagram 上拥有超过 200 万粉丝。最近的例子包括 AI 虚拟主播 Neuro-sama (2022),其在 Twitch 上的订阅量已超过 60 万;以及匿名 Kpop 男团 PLAVE (2023),其在不到两年的时间里在 YouTube 上的观看量已突破 3 亿次。随着 AI 技术的进步以及区块链在支付、价值转移和开放数据平台中的应用,这些智能体有望变得更加自主,并可能在 2025 年开启一个全新的主流娱乐类别。- Katie、Dmitriy

从左上顺时针:初音未来、Virtuals 的 Luna、Lil Miquela 和 PLAVE

4.生成式/智能体驱动的内容营销 (Generative/Agentic Content Marketing)

在某些情况下,智能体本身是产品,而在另一些情况下,智能体则可以成为产品的补充。在注意力经济中,持续输出吸引人的内容是任何想法、产品或公司成功的关键。生成式/智能体驱动的内容为团队提供了一个强大的工具,可以确保一个可扩展、全天候的内容创作渠道。这一领域因“memecoin 与智能体的区别”这一话题的讨论而加速发展。智能体是 memecoin 实现传播的一个强大工具,即使它们还未完全实现“智能体化”。

另一个例子是,游戏行业为了保持用户参与度,正越来越多地追求动态化。一种经典的方法是引导用户生成内容,而纯粹的生成式内容(如游戏内物品、NPC,甚至完全生成的关卡)可能成为这一趋势的下一个阶段。我们很好奇,2025 年智能体的能力将如何进一步扩展内容分发和用户互动的边界。- Katie

5.下一代艺术工具/平台 (Next-Gen Art Tools/Platforms)

在 2024 年,我们推出了 IN CONVERSATION WITH 系列,这是一个与音乐、视觉艺术、设计、策展等领域的加密艺术家对话的访谈节目。今年的访谈让我注意到一个趋势:对加密技术感兴趣的艺术家通常也对前沿技术充满热情,并希望这些技术能够更深地融入他们的创作实践,例如 AR/VR 对象、代码生成艺术以及实时编码 (livecoding)。

生成艺术 (Generative Art) 与区块链技术的结合由来已久,这也让区块链成为 AI 艺术的理想载体。在传统平台中,展示和呈现这些艺术形式非常困难。而 ArtBlocks 则为数字艺术如何通过区块链实现展示、存储、货币化和保存提供了一个初步的探索,极大地改善了艺术家与观众的体验。此外,AI 工具还让普通人也能轻松创作自己的艺术作品。我们非常期待在 2025 年,区块链如何进一步提升这些工具的能力。- Katie

KC: 既然你对加密文化感到挫败并存在不认同的地方,那是什么促使你仍然选择参与 Web3?Web3 为你的创作实践带来了哪些价值?是实验性的探索、经济回报,还是其他方面?

MM: 对我来说,Web3 在多个方面对我个人以及其他艺术家都有积极影响。就我个人而言,那些支持发布生成艺术的平台对我的创作尤为重要。比如,你可以上传一个 JavaScript 文件,当有人铸造或收藏一件作品时,代码会实时运行,并在你设计的系统中生成独特的艺术作品。这种实时生成的过程,是我创作实践中的核心部分。在我编写和构建的系统中引入随机性,无论是从概念上还是技术上,都深刻影响了我对艺术的思考方式。然而,如果不是在专门为这种艺术形式设计的平台上展示,或者是在传统画廊中展示,往往很难向观众传达这一过程。

在画廊中,可能会展示一个通过投影或屏幕实时运行的算法,或者展示由算法生成的多个输出中挑选出的作品,并以某种方式转化为实体形式进行展览。但对于那些对代码作为艺术媒介不太熟悉的观众来说,他们很难理解这种创作过程中随机性的意义,而这种随机性正是所有以生成方式使用软件的艺术家实践中的重要部分。当作品的最终呈现形式仅仅是一张发布在 Instagram 上的图片,或者是一件打印出来的实体作品时,我有时会觉得很难向观众强调作品中“代码作为创作媒介”的这一核心理念。

NFT 的出现让我感到振奋,因为它不仅提供了一个展示生成艺术的平台,还帮助普及了“代码作为艺术媒介”这一概念,让更多人能够理解这种创作方式的独特性和价值。

摘自 IN CONVERSATION WITH:Maya Man

6.数据市场 (Data Markets)

自 Clive Humby 提出“数据是新石油”这一观点以来,企业纷纷采取措施囤积并货币化用户数据。然而,用户逐渐意识到自己的数据是这些巨头公司赖以生存的基石,却几乎无法控制数据的使用方式,也未能从中获得收益。随着强大 AI 模型的快速发展,这一矛盾愈发尖锐。一方面,我们需要解决用户数据被滥用的问题;另一方面,随着更大规模、更高质量的模型耗尽了公共互联网数据这一“资源”,新的数据来源也显得尤为重要。

为了将数据的控制权还给用户,去中心化基础设施提供了广阔的设计空间。这需要在数据存储、隐私保护、数据质量评估、价值归属和货币化机制等多个领域提出创新解决方案。同时,针对数据供应短缺问题,我们需要思考如何利用技术优势,构建具有竞争力的解决方案,例如通过更优的激励机制和过滤方法,创造出更高价值的数据产品。尤其是在当前 Web2 AI 仍占主导地位的背景下,如何将智能合约与传统服务协议 (SLA) 相结合,是一个值得深入探索的方向。- Danny

7.去中心化计算 (Decentralized Compute)

在 AI 的开发和部署中,除了数据,计算能力同样是关键要素。过去几年,大型数据中心依靠对场地、能源和硬件的独占访问权,主导了深度学习和 AI 的发展。然而,随着物理资源的限制和开源技术的发展,这种格局正在逐步被打破。

去中心化 AI 的计算 v1 阶段类似于 Web2 的 GPU 云,但在硬件供应和需求方面并无明显优势。而在 v2 阶段,我们看到一些团队开始构建更完善的技术堆栈,包括高性能计算的编排、路由和定价系统,同时开发专有功能以吸引需求并提升推理效率。一些团队专注于通过编译器框架优化跨硬件的推理路由,而另一些则在其计算网络上开发分布式模型训练框架。

此外,一个被称为 AI-Fi 的新兴市场正在形成,其通过创新的经济机制,将计算能力和 GPU 转化为收益资产,或者利用链上流动性为数据中心提供硬件融资的新途径。然而,去中心化计算是否能真正实现其潜力,仍取决于理念与实际需求之间的差距能否被弥合。- Danny

8.计算核算标准 (Compute Accounting Standards)

在去中心化高性能计算 (HPC) 网络中,如何协调异构计算资源是一个重要的挑战,而目前缺乏统一的核算标准让这一问题更加复杂。AI 模型的输出结果具有多样性,例如模型变体、量化 (quantization)、通过温度 (temperature) 和采样超参数调整的随机性等。此外,不同的 GPU 架构和 CUDA 版本也会导致硬件输出结果的差异。这些因素使得在异构分布式系统中,如何准确统计模型和计算市场的容量成为一个亟待解决的问题。

由于缺乏这些标准,今年我们在 Web2 和 Web3 的计算市场中多次看到模型性能和计算资源的质量与数量被错误核算的情况。这迫使用户通过运行自己的基准测试或限制计算市场的使用速率来验证 AI 系统的实际性能。

加密领域一贯强调“可验证性”,因此我们希望到 2025 年,加密与 AI 的结合能让系统性能更加透明。普通用户应该能够轻松对比模型或计算集群的关键输出特性,从而审计和评估系统的实际表现。- Aadharsh

9.概率隐私原语 (Probabilistic Privacy Primitives)

Vitalik 在文章《加密 + AI 应用的承诺与挑战》中提到一个独特的矛盾: “在密码学中,开源是实现安全的唯一方法,但在 AI 中,公开模型(甚至是训练数据)会极大增加其受到对抗性机器学习攻击的风险。”

虽然隐私保护并非区块链的新研究方向,但随着 AI 的快速发展,隐私相关的密码学技术正在加速应用。今年在隐私增强技术方面已经取得了显著进展,例如零知识证明 (ZK)、全同态加密 (FHE)、可信执行环境 (TEE) 和多方计算 (MPC)。这些技术被用于如在加密数据上进行通用计算的私有共享状态等场景。同时,像 Nvidia 和 Apple 这样的技术巨头也在利用专有的 TEE 技术,在硬件、固件和模型保持一致的情况下,实现联邦学习和私有 AI 推理。

未来,我们将重点关注如何在随机状态转换中保护隐私,以及这些技术如何促进去中心化 AI 在异构系统上的实际应用,例如去中心化的私有推理、加密数据的存储和访问管道,以及完全自主的执行环境的构建。- Aadharsh

Apple 的 Apple Intelligence 堆栈和 Nvidia 的 H100 GPU

10.智能体意图与下一代用户交易界面 (Agentic Intents and Next-Gen User Trading Interfaces)

AI 智能体的一个重要应用是帮助用户在链上自主完成交易。然而,在过去的 12-16 个月中,关于“智能体意图”、“智能体行为”、“求解器”等术语的定义始终模糊不清,与传统“机器人”开发的区别也不够明确。

未来一年,我们期待看到更复杂的语言系统与多种数据类型和神经网络架构结合,从而推动这一领域的发展。智能体会继续使用现有的链上系统完成交易,还是会开发全新的工具和方法?大语言模型 (LLM) 是否仍会作为这些系统的核心,还是会被其他技术取代?在用户界面层面,用户是否会通过自然语言与系统交互完成交易?经典的“钱包即浏览器”理论是否会成为现实?这些都是值得探索的问题。- Danny、Katie、Aadharsh、Dmitriy